ADVANCES IN EUCALYPTUS PULP BLEACHING TECHNOLOGY
Advances in eucalyptus pulp bleaching technology

- Advances in Eucalyptus pulp bleaching technology
- Introduction
- Bleaching process development
- Recent topics in pulp bleaching technology
 - Oxygen delignification
 - Pulp washing
 - Hexenuronic acid removal
- Modern bleaching sequences
- Pulp quality
- Power, steam, effluent
- Recent mill results
- Future topics and conclusion
Introduction

- Use of eucalyptus pulp has increased rapidly
- Production capacity increase in the southern hemisphere
 Fast-wood plantations
 Uniform quality
- Mill capacities growing
Advances in eucalyptus pulp bleaching technology

WORLD Consumption of Bleached Eucalyptus Chemical Pulp

Market
Integrated

Million ton Consumption

Source: JP World Fiber Outlook 2006 + cop

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Development of pulp mill capacity

Year

Capacity, ADT/D

0 1000 2000 3000 4000
Advances in eucalyptus pulp bleaching technology

Specific Investment Requirements
Investment costs for new capacity continue to grow but so does the size. New hardwood pulp mill projects have a capacity as high as one million tons. Investment cost/ton continues to drop, but increasingly slowly.

Source: JP World Fiber Outlook 2006
3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Bleaching process development

- From elemental chlorine to chlorine dioxide
- Less bleaching stages
- Oxygen delignification
- Oxygen and peroxide reinforced pulp bleaching
- Medium consistency pumping
- Equipment technique
 - High shear mixing
 - Pulp washers
- ECF, Light-ECF, TCF bleaching
 - New bleaching chemicals
 - Ozone, Paa, PMo
- Reduced effluent discharges
Advances in eucalyptus pulp bleaching technology

Graphs:
- **Water consumption in bleaching m³/admt**
 - Data points show a decrease over time.

- **Total active chlorine consumption, kg/admt**
 - Data points show a decrease over time.

- **AOX in bleach effluent, kg/admt**
 - Data points show a decrease over time.

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Bleaching process development

- O/O-A/D-E_{OP}
- O/O-A/D-E_{OP}-D-P
- O/O-D_{Hot}E_{OP}-D_{ND}
- O/O-A/D-E_{OP}-D_{ND}
- O/O-D-E_{OP}-D_{ND}
- O/O-D-E_{OP}-D(-D)
- O/O-D-E_{O}-D-D
- O-C/D-E_{O}-D-D
- O-C/D-E-D-E-D
- C/D-E-H
- C-E-H-D-E-D
- C-E-H-H

TCF

1995

O/O-Q-Z-Q-Z-P
O/O-Q-Z-Q-P
O/O-A-Z-P-Z-P
O/O-Z/Q-P-Z/Q-P
O/O-Q-P-Q-P
O/O-Q-P_{AA}-Q-P

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Bleaching process development

Year

Drum Displacer (DD) bleaching
Wash Press bleaching
Displacement bleaching
Diffuser bleaching
Ozone bleaching
Oxygen delignification
Medium consistency technology
Medium consistency pump & equipment
Drum washer bleach plant
Advances in eucalyptus pulp bleaching technology

Bleaching process development
Advances in eucalyptus pulp bleaching technology

Bleaching process development

Diffuser bleaching
Advances in eucalyptus pulp bleaching technology

Bleaching process development
Advances in eucalyptus pulp bleaching technology

Bleaching process development

Medium consistency pump
- capacity >4000 admt/d
- head up to 200 m
- consistency 10…12%

High density stock pump
- capacity <1500 admt/d
- head up to 100 m
- consistency 10…15%
Advances in eucalyptus pulp bleaching technology

Bleaching process development

Chemical mixer
- capacity <1500 adm/d
- consistency 10...13%

Medium consistency chemical mixer
- capacity >4000 adm/d
- consistency 10...13%

Rotor

Chemical

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Topics in pulp bleaching technology

- Oxygen delignification
- Removal of Hexenuronic acid
- Bleaching sequences
- Pulp washing
- Pulp quality
Advances in eucalyptus pulp bleaching technology

Oxygen delignification

Single-stage system

Two-stage system

Process parameters
 Temperature profile
 Chemical profile
 Pressure profile
Advances in eucalyptus pulp bleaching technology

Single-stage oxygen delignification

Two-stage oxygen delignification
Two-stage versus single-stage oxygen delignification

✓ Enables better process parameter controls
 ✓ retention time, pressure, chemical, temperature

✓ Enables better potential for kappa reduction, selectivity, brightness
 ✓ 1-2 units higher kappa reduction
 ✓ 5 - 10 units higher brightness

✓ Pulp washing before oxygen delignification in a key role
 ✓ there is peroxide formation in oxygen reactions and black liquor catalyzes the degradation of peroxide
 ✓ COD carryover less than 90 kg/adt
Advances in eucalyptus pulp bleaching technology

Removal of hexenuronic acid
Advances in eucalyptus pulp bleaching technology

HexA contents in different pulps

✓ Scandinavian softwood pulps 20 – 30 mmol/kg
✓ Scandinavian birch pulp 40 – 60 mmol/kg
✓ Eucalyptus pulp 45 – 85 mmol/kg
✓ Acacia and mixed hardwood pulps 35 – 50 mmol/kg

10 – 12 mmol HexA /kg corresponds to 1 kappa unit
Advances in eucalyptus pulp bleaching technology

Relation between HexA and residual lignin of the hardwood and softwood pulp kappa number

Softwood

Hardwood

In eucalyptus pulp 30…50% of kappa can originate from HexA

HexA “False” lignin

Residual lignin

Residual lignin

HexA “False” lignin

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

- HexA consumes bleaching chemicals (O_3, ClO_2, and P_{AA})
- HexA does not react with O_2 and H_2O_2
Advances in eucalyptus pulp bleaching technology

Oxygen Delignification, Hardwood

- Delignification degree 60…65 %
- Kappa reduction 40…50 %
A-Stage - typical process conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HexA content</td>
<td>40-80 mmol/kg HW, 20-30 mmol/kg SW</td>
</tr>
<tr>
<td>pH</td>
<td>3 – 3,5</td>
</tr>
<tr>
<td>pulp consistency</td>
<td>medium; 10-12%</td>
</tr>
<tr>
<td>COD carryover</td>
<td>*10-15 kg/adt</td>
</tr>
<tr>
<td>temperature</td>
<td>90 - 100°C</td>
</tr>
<tr>
<td>time</td>
<td>2 - 4 h</td>
</tr>
</tbody>
</table>

$$\Rightarrow$$ 60-80% HexA decrease

3 - 5 kappa units, hardwood

1 - 3 kappa units, softwood
Advances in eucalyptus pulp bleaching technology

A-stage alternatives

A-stage in storage tower

A-stage in separate up-flow tower

Post Oxygen Washers

Low pressure steam
Condensate

A-stage 85 °C
pH 3.5

H₂SO₄
Advances in eucalyptus pulp bleaching technology

Development of HexA as a function of time (pH = 3.5)

Development of HexA as a function of time (pH = 3.0)

/1/, /2/ Vuorinen, T., Buchert, J., Teleman, A., Tenkanen, M. & Fagerström, P
Advances in eucalyptus pulp bleaching technology

South-American euca, HexA content 54 mmol/kg

A-stage kappa vs. time, 90 °C pH 3.4

- 10.1
- 7.6
- 6.5
- 5.4
- 4.2

Time, min

Kappa number
Advances in eucalyptus pulp bleaching technology

Competing removal of HexA and lignin

Relative lignin content (%)

Relative HexA content (%)

0 20 40 60 80 100

Paa-stage
Z-stage
D-stage

1/ Vuorinen, T., Buchert, J., Teleman, A., Tenkanen, M. & Fagerström, P
Advances in eucalyptus pulp bleaching technology

Reaction of 2-furoic acid with ClO$_2$ and HOCl/Cl$_2$
($T=90^\circ C$, $pH=2$)

Toikka, K et al
Advances in eucalyptus pulp bleaching technology

Combining Hexa removal to bleaching
Modern bleaching sequences
Advances in eucalyptus pulp bleaching technology

A / D₀ʷ

D_{Hot}ʷ

A / Zʷ

Aʷ − Zʷ

Z / Dʷ

Aʷ − Z / Dʷ
Effect of interstage washing on the performance of the selective hydrolysis of HexA in chlorine dioxide bleaching of birch kraft pulp

<table>
<thead>
<tr>
<th></th>
<th>A-D-E-D</th>
<th>A/D-E-D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa A-D-E</td>
<td>Bright. ISO%</td>
</tr>
<tr>
<td>Pulp 1</td>
<td>2.4</td>
<td>86.1</td>
</tr>
<tr>
<td>Pulp 2</td>
<td>2.7</td>
<td>84.5</td>
</tr>
<tr>
<td>Pulp 3</td>
<td>2.0</td>
<td>88.6</td>
</tr>
</tbody>
</table>

/1/ Vuorinen, T., Buchert, J., Teleman, A., Tenkanen, M. & Fagerström, P

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Effect of interstage washing on the performance of the selective hydrolysis of HexA in ozone bleaching of birch kraft pulp

<table>
<thead>
<tr>
<th></th>
<th>Kappa number</th>
<th>Brightness ISO%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-A</td>
<td>4.1</td>
<td>53.6</td>
</tr>
<tr>
<td>O-A-Z</td>
<td>1.8</td>
<td>72.1</td>
</tr>
<tr>
<td>O-A/Z</td>
<td>3.7</td>
<td>56.2</td>
</tr>
</tbody>
</table>
Advances in eucalyptus pulp bleaching technology

A stage combined with D_0 stage

HW, Kappa 11.5, 33.2 kg/bdmt (act Cl), $T=63^\circ C$, residuals kg/admt
Advances in eucalyptus pulp bleaching technology

Relative benefits (+/-) of different bleaching sequences with respect to each other

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Capital cost</th>
<th>Chemical cost</th>
<th>Brightness flexibility</th>
<th>Brightness reversion</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/D-Eop-D-P</td>
<td>- - -</td>
<td>+ +</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td>A-Z/D-Eop-D</td>
<td>- - -</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+ +</td>
<td>+ + +</td>
</tr>
<tr>
<td>A/D-Eop-D-P</td>
<td>-</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+ +</td>
</tr>
<tr>
<td>A/D-Eop-Dn-D</td>
<td>- -</td>
<td>+ +</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A/D-Eop-DnD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A/D-Eop-D</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z/D-Eop-DnD</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A/D-Eop-D/P</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z/D-Eop-D/P</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+ +</td>
</tr>
</tbody>
</table>
Effect of pulp washing

Advances in eucalyptus pulp bleaching technology
Advances in eucalyptus pulp bleaching technology

Effect of post O$_2$ carryover and D$_{100}$ recycle to D$_{100}$ stage on D$_{100}$-E$_{op}$ kappa number and brightness. The letters PO stand for post oxygen.

Effect of post O$_2$ carryover and D$_{100}$ recycle to D$_{100}$ stage on D$_{100}$ E$_{op}$ kappa number and brightness

Pulp: Southern Pine, PO kappa 18
D$_{100}$ recycle 8.5 kg/t COD, PO carryover 10 kg/t COD, 18.5 kg/t COD total
Advances in eucalyptus pulp bleaching technology

Effect of COD originating from different sources on brightness decrease and kappa increase after the E-stage

- COD caused by lignin from cooking
- COD caused by lignin from oxygen delignification
- COD caused by lignin from D0-stage

/5/ Viirimaa, M., Dahl, O., Niinimäki, J., Ala-Kaila, K. and Perämäki, P

ISO-Brightness (%) decrease after E-stage

ISO-brightness (%) decrease

kgCOD/bdt into the D-stage

0 1 2 3 4 5 6 7 8 9 10

0 0.5 1 1.5 2 2.5 3 3.5

kgCOD/bdt into the D-stage

0 1 2 3 4 5 6 7 8 9 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COD caused by lignin from cooking
COD caused by lignin from oxygen delignification
COD caused by lignin from D0-stage
Advances in eucalyptus pulp bleaching technology

Laboratory bleaching trial dilution with clean water and circulating filtrate in D₀-stage. Bleaching sequence D₀-EP-D₁-D₂. SWSA, kappa 13.1. ClO₂ charge in D₀ 3.8% and in D₁ 1.5%.

Increase in the chemical consumption, when diluting with filtrates

Brightness, % ISO

Total ClO₂ charge, kg act.Cl/bdt

3rd IEPC Belo Horizonte 4-7 March 2007 OP

/6/ Alastalo, J., Vehmaa, J., Pikka, O
Advances in eucalyptus pulp bleaching technology

3-stage bleach plant with fractional and non-fractional washing at normal and reduced effluent discharge

Total COD in pulp kg/adt

<table>
<thead>
<tr>
<th></th>
<th>A/D₀</th>
<th>Eop</th>
<th>D₁</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleach Plant Effluent 15 m³/adt</td>
<td>5</td>
<td>8.9</td>
<td>5</td>
<td>1.9</td>
</tr>
<tr>
<td>Bleach Plant Effluent 10.8 m³/adt</td>
<td>5</td>
<td>22.8</td>
<td>14.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Segregated washing</td>
<td>17.9</td>
<td>16.6</td>
<td>11.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Non-segregated washing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advances in eucalyptus pulp bleaching technology

Pulp quality
Fiber deformation/Fiber damage

Caused by chemical and mechanical treatment

- at high alkali concentration
- at high temperature
- brown stock/oxygen delignification areas most critical
Fiber curl Fiber kink Microcompression

Dislocation Fiber Twist Fiber wall collapse

/11/ Rauvanto, I., Henricson, K.,
Advances in eucalyptus pulp bleaching technology

The effect of HexA in brightness reversion in laboratory-bleached eucalyptus pulps

Delta Brightness, %

HexA, meq/kg

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

Correlation between PC and carbonyl content after 48 h of ageing at 80°C and 65% relative humidity

PC, 48h ageing

oxidized kraft pulp
oxidized kraft pulp (xylan reduced)

/7/ Adorjan, I., Zhou, Z., Jääskeläinen, A.-S., Potthast, A., Vuorinen, T.,
Advances in eucalyptus pulp bleaching technology

OX in pulp in different bleaching sequences

OX ppm

DEDD, DEDD, A/DEDD, A/DEDD, A/DEDP

Sequence

/8/ Martikka, M

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology

A modern effluent treatment system

Reductions:
- COD: 70-75%
- AOX: 50-60%
- BOD5: 95%
- Color: 60-70%
Recent mill results
Advances in eucalyptus pulp bleaching technology

Veracel Fiberline 3000 ADMT/D

Cooking with Lo-Solids
Brownstock washing
Oxygen Delignification
Knotting & Screening

Bleaching

Pulp brightness 92% ISO
Active chlorine 23 kg/ADT
Peroxide 5 kg/ADT

3rd IEPC Belo Horizonte 4-7 March 2007 OP
2405 ADMT/D
Eucalyptus
92 ISO
27.5 kg act Cl/adt
3.7 kg H₂O₂/adt
Viscosity >1000SCAN
Advances in eucalyptus pulp bleaching technology

Eucalyptus Fiberline, 800,000 ADMT/a

Cooking with Lo-Solids®

Brownstock Washing

Oxygen Delignification

Knotting & Screening

Blow Tank 6000 m³

2 x DD4580.2MC

O₂

55 min

2x DD4580.2LC

Condensate/Hot Water

Brownstock Hi-D Tank 6000 m³

Bleaching

A

120 min

Dₘ

15 min

E₂o₃

60 min

Dₚ

120 min

Dₘ

2.5 min

Dₜ

120 min

To Hot Water Tank

Warm Water

White water

Hot water

Bleached HD Tanks 2 x 6000 m³

Pulp brightness 92% ISO

Active chlorine 27.5 kg/ADT

Peroxide 3.7 kg/ADT

3rd IEPC Belo Horizonte 4-7 March 2007 OP
Advances in eucalyptus pulp bleaching technology
Development of Chemical Pulp Mill during 10-15 years

Driving forces: Efficiency - Quality - Environmental safety/Energy - Raw materials

Single line capacity doubled, MC-technology in wider use

Improved control of chip raw material and pulp quality

Improved cooking:
- LoSolids, EAPC, ITC, Supebatch

1990

Modern mill:
1000-1300 tpd
C/DEDED
Effluent 50-70 m³/t
AOX 1,5-3,0 kg/t

Modern mill:
1600-2000 tpd
DEoDD or ZPZP
Effluent 10-20 m³/t
AOX < 0.5 kg/t
Surplus electricity +

1995

Modern mill:
2500-3000 tpd
A/DEopD(PO) or (ZD)EopDPO
Effluent 10-15 m³/t
AOX 0.1-0.2 kg/t
Surplus electricity ++
Advanced controls

2000

Modern mill:
3000-4000 tpd
A/DEopD(PO) or (ZD)EopDPO or Shorter sequence
Bleach filtrate treatment
Chemical balance control
Effluent <10-15 m³/t or less
AOX < 0.1 kg/t
Surplus electricity +++
Advanced controls
Simulation
Advances in eucalyptus pulp bleaching technology

Conclusion

Double-stage oxygen delignification creates the basis for low chemical bleaching

Low carryover to bleaching and a low carryover amount in each bleach stage is very important

ECF bleaching is a dominant bleach concept. Several variations of bleach sequences are possible

HexA removal is an established stage in the bleaching sequence. A four-stage sequence A/D-Eop-D-P is recommended for 92+ISO brightness

Brightness reversion is improved through the removal of HexA. Reduction of act. chlorine usage and a final P-stage improve brightness stability
Conclusion …

OX in pulp is reduced by lower act. chlorine usage and a final P-stage

Electricity and steam consumption in a modern bleach plant is 70-80 kWh/adt and 359-450 kg/adt respectively

Effluent flow from ECF bleaching is 10-15 m3/adt. AOX, COD and BOD5 discharges are very low after a modern effluent treatment system

Chemical consumption of 23 kg act. Cl/adt and 5 kg/adt peroxide in four-stage bleaching to 92.5 ISO in mill conditions has been achieved
Thank you for your attention