Advances in Eucalyptus Fiber Properties & Paper Products

Celso Foelkel
The different viewpoints
Is there a single and most correct way
to see our mills, products and
customers?

How to combine these different
viewpoints?
“Each paper-machine, each pulp mill, any pulp & paper process, any fibrous raw material although similar are specific and unique. They all have own key-factors to be controlled and optimized”
• Why are some eucalyptus fibers different from others?

• Why are some eucalyptus fibers preferred by customers?

• Why some pulps, even when offered by lower prices, are not attractive to the papermakers?
What makes a pulp special?

“Best fitness to the papermaker”

• End product specifications?
• Paper-machine runnability?
• Easy-life to the papermaker?
• Overall cost reductions?

This means that we are not focusing only the pulp price, but the paper operational production cost. We are also affecting all the paper production chain.
The world today:

• over 100 different brands of market pulps

• close to this numbers are the pulp quality categories

WHY?

• different raw materials;
 • pulpwood blends;
• different pulp-making processes.
The real world:

Lots of variability everywhere

• How to tame variability?
• How to cope with variability?
• How to live together with variability?
• How to use it in our favor?
Causes for pulp quality variability:

- wood differences
- chip quality management
- pulping processes
 - bleaching line
 - washing presses
- drying (airborne, cylinders, flash)
Some causes for pulp quality variability:

- pH
- fiber charges
- fiber population
- individual fiber strength
- fines
- water retention value
- fiber flexibility
- cell wall thickness
- bonding ability
Because of these wide variations in different pulp qualities:

The papermaker develops a recipe or a secret potion and he is resistant to change (very understandable)

He has as objectives:

- costs savings
- fewer breaks
- less broke
- better runnability
- end product requirements
The papermaker is always squeezed by:

- Commercial demands
- Cost reduction demands
- Production objectives

He hates variability, but he is always obliged to look for better process conditions, and less expensive manufacturing (new fillers, new refiner discs, new retention aids, new brighteners agents, new quality demands from the customers, etc)
The papermaker is always squeezed:

“Please, give me a stable quality pulp or one I may predict behavior”
What papermakers most dislike:

• breaks, breaks, breaks
• energy consumption
• chemical consumption
• poor drainage
• machine speed
• broke
• second class quality (below standards)

All representing HIGHER COSTS & PRESSURES
Definitions

Machine productivity:
- fast speed
- fast drainage
- high consistency after the wet end
- excellent sheet consolidation
- minimum breaks

Quality
- maximum achievements in paper specifications
- minimum generation of off-grades

No matter the papermaker is manufacturing a commodity or a specialty product, his dreams are the same.
Papermakers want to have:

• a predictable pulp

• a “saving cost” pulp (I’m not making reference only to the market pulp price)

• a pulp recipe that allow them to reach the paper specifications 100% of the time

• high operational efficiencies
In case we provide these gifts to them, do they consider to pay a premium for?

- better machine performance
- higher productivity
- lower energy, chemicals, etc
- better quality
- less broke generation
- no complaints from customers
- better sleep at night
- no problems with the wife (or spouse) due to machine running problems at night
What is really an eucalyptus pulp?

- Fibers (over 90% on weight)
- Vessel elements
- Fines (Parenchyma cells and debris)
Fiber properties:
- fiber population
- coarseness
- curl index
- kinks & deformations
- zero-span breaking length
- hemicellulose content
- fiber charges
- fiber flexibility
- fiber rigidity
- fine content,
- cell wall thickness
- pulp viscosity

Most important quality properties to papermakers

Paper-machine
- drainage speed
- refining ability
- WRV
- swelling ability
- formation
- wet web strength
- pH
- dry handsheet properties:
 - bulk;
 - porosity;
 - opacity;
 - stiffness;
 - tensile; etc.
How to tame variability?

To control variability, the papermaker depends on laboratory evaluations and machine performance indexes.

Many times, the variables and properties being evaluated mean close to nothing.

Pulp performance is vital.
However

Peripherical pulp properties:
- viscosity
- moisture
- beating runs
- ash content
- cleanliness

Many properties are measured just to provide numbers for justifications.
The three management levels

- Management of the peripherical pulp quality properties
- Management of pulp variability (and machine performance)
- Management of product differentiation
Management of product differentiation

Only possible when the other two physiological basic needs have been fulfilled.
How can we manage product differentiation?

- Pulp quality (types, blends, fractioning, etc)
- Pulping processes (ECF Light or TCF, etc)
- Wood quality (forest certification, wood yard, etc)
- Papermaking process (refining, use of never dried or dried pulps, etc)
How can we manage product differentiation?

Silviculture, genetics and wood quality are only part of this game, they are important, but there are other interested parties to be involved.
Differentiation is more easily achieved in mills with more than one paper-machine

- no transitions
- interchangeabilities
- better controls
- specific care
In general, tailor making brings conflicts:

- commercial area
- production area
- product development area
- fiber supply area (foresters or pulp buyers)

“A good start should be an excellent program of people relations and human behavior”
In general, tailor making brings conflicts:

- Everyone would like to have a single product, with no variability, and being able to be successful anywhere and to anybody.

“However, this is not the real life”
Is there a single and most important pulp characteristic or fiber property?

The mill bottlenecks will define what is important...

“This is real life”
“This is real life”

- refining capacity
- steam availability
- electricity availability
 - short wet end
- wet presses deficiencies
- out-of-dated headbox
 - etc
Back again to the papermaker physiological needs:

How may we provide happiness and good will to our papermaker friend?
Need # 1: Drainage and retention in the wet end

- Fiber population
- Freeness level
- WRV
- Fiber flexibility
- Fines
- Fiber charges
- Wire design
- Machine cleanliness
Need # 2: Sheet strength along the paper-machine, specially at the wet end and wet presses passes

- Individual fiber strength (cell wall, fiber deformations, microfractures)
- Fiber bonding
- Consolidation of the web
- Contaminants
- Moisture content
- Wet Web Strength
Need # 3: Final paper specifications as defined by customers and end-users

- Strength properties
- Tactile properties
- Formation
- Brightness
- Bulk
- Porosity
- Absorption
- Aesthetical properties
- etc.
The Dilemma or the Enigma...

The most important Eucalyptus Fiber or Pulp Properties
Fiber Population
(associated to fiber coarseness)

Related to a number of other fiber properties:

- cell wall fraction
- fiber length
- Runkel index
- wood basic density
- fines content
Fiber Population
(associated to fiber coarseness)

Related to a number of paper-machine performance indexes and paper quality:

- drainage
- speed
- retention
- bulk, porosity, opacity, etc
- formation
- smoothness
Wood Density and Fiber Coarseness

<table>
<thead>
<tr>
<th>Wood Density g/cm³</th>
<th>Fiber Coarseness mg/100m</th>
<th>Fiber Population Nº in million/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,43</td>
<td>5,8</td>
<td>25,4</td>
</tr>
<tr>
<td>0,46</td>
<td>6,4</td>
<td>21,6</td>
</tr>
<tr>
<td>0,51</td>
<td>7,4</td>
<td>19,7</td>
</tr>
<tr>
<td>0,54</td>
<td>9,3</td>
<td>17,5</td>
</tr>
<tr>
<td>0,60</td>
<td>11,8</td>
<td>13,0</td>
</tr>
</tbody>
</table>
Suggestions for High Corseness Fibers (Heavy Fibers)

- Decor papers
- Filter papers
- Tissue papers
- Cigarette papers
Suggestions for Low Corseness Fibers (Light Fibers)

- Base paper for coating
 - Label papers
 - Release papers
 - Glassine papers
 - Thermal papers
- Highly bonded papers
- Some P&W papers

However, this is very much dependent on the customers limitations (machine speed & design, porosity and bulk specifications, etc.)
Individual Fiber Strength

Related to a number of fiber quality and final paper parameters:

- cell wall fraction
- micellar angle
 - Zero span
- fiber deformations
- Wet Web Strength
- dry paper strengths
Fiber Collapsibility (associated to wet sheet compactability)

Related to a number of fiber quality and final paper parameters:

- cell wall fraction
- fiber resistance to collapse
- fiber coarseness
- bonding strengths
- dry sheet bulk at a given level of freeness
Eucalyptus Chemical Pulp Fibers
Collapsible and collapse resistant fibers
Fiber Bonding
(associated to paper cohesiveness)

Related to a number of other fiber properties:

- beating (fibrillation and collapsibility)
- fines and fiber debris
- dry/wet short span
- wax picking test
- fiber population
- fiber coarseness
- cell wall fraction
Fiber Swelling & Hydration Capacity

Related to a number of fiber quality and final paper parameters:

- Water Retention Value
 - freeness level
 - fiber charges
 - carboxyl groups
 - fine content
- pulp degradation (viscosity)
- fiber wall micro-porosity and damages

Pulp Swelling and Hydration may become a real problem in integrated paper mills
Fiber Swelling & Hydration Capacity

A very strong relation between WRV and Hysteresis

For this reason, many papermakers prefer to have some percentage of dry paper broke in the furnish. With this candour thinking, they believe that the generation of dry broke is required (sic..)
Fiber Deformations

Fiber life is not that simple
Form Factor of a Fiber = $100 \times \frac{C}{L}$

And also Fiber Latency...
Fiber new attributes

How to add these attributes to a pulp?
Fiber Deformations

They provide improvements in porosity, bulk, absorption, and other tissue and filter properties.

Fiber deformations may be artificially generated at the manufacturing processes.
Fines

Always discarded as an important pulp property, but perhaps one of the most relevant

Fines management is a real new opportunity to papermakers
The most usual Eucalyptus paper products

- Printing and Writing
- Tissue, filters, decor, base for impregnation
- Multiply cardboard
- Cigarette papers
- Specialty papers
Tissues and Porous Papers

“what do we need on them?”

• Bulk
• Porosity
• Softness
• Tactile feeling
• Fast drainage
• Absorption
• WWS
• Loosen fiber structure in the paper (creping & embossing)
Tissues and Eucalyptus Fibers
“what do we need on them?”

- low fines
- high coarseness
- low fiber population
- low hemicellulose content
- low bonding
- low WRV
- high fiber deformations
- high bulk at a given tensile

Fortunately, we are able to control and to design all of these pulp properties.
P & W Papers
“what do we need on them?”

- Formation
- Strength
- Porosity
- Opacity
- Surface smoothness
- Dimensional stability
- Bonding
P&W and Eucalyptus Fibers
“what do we need on them?”

- high fiber population
- bonding
- fines
- low content and small vessel elements
- hemicellulose content
- high strengths at low level of refining (fast beating response, for example 25° or 30° SR)
- strengths properties at a given bulk level (for example 1.8 or 1.6 cm³/g)
P&W and Eucalyptus Fibers
“what do we need on them?”

There are limits for all these characteristics, and they depend on bottlenecks, available machinery and operator skills.
Eucalyptus Fibers
“why do papermakers love them?”

- Unique fiber properties
- Excellent paper-machine behavior
- Lower cost in relation to long fibers

Eucalyptus fibers are not to be highly refined: we may lose all their most important features
What can we do to bring an unique reference to our pulp products in the competitive market?

- Coarseness & fiber population
- Fiber deformations
- Fiber collapsibility
- Fines management
- Individual fiber strength
- Hysteresis management
- Hemicellulose content
- Pulpwood recipes
- Brightness & cleanliness
- Paper-machine drainage, cleanliness & speed
- Bonding and strengths
Well, this is all my friends.

Thank you very much.

Good luck with the utilization of Eucalyptus pulps in your furnishes.
What can we also do to bring an unique reference to our pulp products?

Management of the swelling ability of the pulp furnish

Management of fines

Management of fiber deformations

Management of pulp blends

Management of the wood supply

Please, e-mail me a message with your preference for my next article: foelkel@via-rs.net