

Advanced technologies for bleached eucalyptus pulp production: from wood to product

Jorge L. Colodette, UFV José L. Gomide, UFV Andréia Magaton, UFV

VIII Simposio Internacional de la Industria de la Celulosa y Papel, Concepción, Chile, November 13-14, 2012 1

Brazilian Pulp and Paper Industry

PULP			PAPER		
	Country	1,000 tons	Country	1,000 tons	
1.	USA	49,243	1. China	92,599	
2.	China	22,042	2. USA	75,849	
3.	Canada	18,536	3. Japan	27,288	
4.	Brazil *	14,164	4. Germany	23,122	
5.	Sweden	11,877	5. Canada	12,787	
6.	Finland	10,508	6. Finland	11,789	
7.	Japan	9,393	7. Sweden	11,410	
8.	Russia	7,421	8. South Korea	11,120	
9.	Indonesia	6,278	9. Indonesia	9,951	
10.	Chile	4,114	10. Brazil *	9,844	
11.	India	3,931	11. India	9,223	
12.	Germany	2,762	12. Italy	9,146	
	Other	25,313	Other	89,771	
тоти	AL WORLD	185,582	TOTAL WORLD	393,899	

New Capacity

COUNTRY	START UP	COMPANY	LOCALE	ADT/YR
Brazil 2012		ELDORADO	Três Lagoas - MS	1,400,000
Uruguay	2013	StoraEnzo/ Arauco	MdP- UY	1,300,000
Brazil	2014	Suzano	Imperatriz - MA	1,400,000
Brazil	2015	Klabin	Ortigueira - PR	1,500,000
Brazil	2015	CMPC	Guaíba - RS	1,350,000
Brazil	2016	Fibria	Três Lagoas - MS	1,400,000
Brazil	2016	StoraEnso/Fibria	Porto Seguro - BA	1,400,000
Chile	2016	Arauco	Arauco - CL	1,500,000
Brazil	2017	Suzano	Somewhere - PI	1,500,000
Brazil	2018	Cenibra	Belo Oriente - MG	1,500,000
Brazil	2018	BRAXCEL	Gurupi - TO	1,500,000
TOTAL				15,750,000

PRODUCTIVITY (AAI), m³/ha/year

Eucalyptus spp.

Pinus spp.

12 year rotation

Productivities up to 100 m³/ha/year have been reported for *E. grandis X E. urophylla* hybrids in certain sites in the state of Bahia (*Fernandes et al., 2011*)

Source: ABRAF, STPC, 2012.

Outline:

-Wood quality
-Cooking
-Bleaching
-Brightness stability

Important Definitions

- AAI = annual average increment (m³/ha/yr)
- Yield = gravimetric yield (t pulp/t wood)
- Density = t wood/ m³ wood
- SWC = specific wood consumption (m³ wood/ t pulp)
 - SWC = 1.00 ton pulp/ (yield * density)
- AAICell = AAI / SWC (t pulp/ha/yr)

Wood Quality Traits

Wood Density

Wood Chemistry:
 Cellulose
 Extractives
 Lignin

 Lignin S/G
 Hemicelluloses
 Uronic Acids

SWC = Specific Wood Consumption (m³ wood/ ton of pulp)

7-8 yr old eucalyptus samples cooked to kappa 17-18

Source: Colodette et al. (7)

Effect of wood density and pulping yield on SWC for *Eucalyptus grandis* and *Eucalyptus urophylla* cooked to kappa 17-18

Trait	Eucalyptus grandis	Eucalyptus urophylla
Wood density, t/m ³	389	544
Pulping yield, %	55.9	51.7
SWC, m³/odt pulp	4.60	3.56

Source: Colodette et al. [7]

Wood Density

- Overall, one should strive for high wood densities and pulping yields
- However, there are more opportunities to change wood density (350-600 kg/m³) than pulping yield potential (50-55%), through tree improvement programs

Effect of wood ethanol/toluene and DCM extractive contents on pulping yield at kappa 18±0.5 for ten seven-year old *Eucalyptus*

Extractives

- Extractives negatively affect pulping yield;
- Brazilian grown eucalyptus contains low extractives because of young harvesting age, but content increases fast with aging (premature formation of heartwood)
- Eucalyptus lipophyllic extractive fraction causes severe pitch problems (steryl esters)

Effect of lignin content on pulping yield to kappa 18±0.5 for ten seven-year old samples

Wood Lignin Syringyl (S)/ Guaiacyl (G)

Effect of lignin S/G ratio on pulping yield at kappa 17 for twenty four three-year old *E. urograndis* wood samples.

Source: Gomes & Colodette (10).

Relationship between wood lignin content and syringyl/guaiacyl ratio for 100 samples of three-year old *Eucalyptus urograndis*

Source: Colodette et al. (20).

Relevance of the Lignin S/G Ratio

Wood containing lignin of high S/G ratio will defiberize at lower kappa numbers during cooking, without excessive alkali charges and yield penalties

In other words, there will be a lower lignin content in the high S/G derived pulp before the fibers are chemically separable; thus decreasing bleaching costs.

High S/G Lignin Low S/G Lignin (defiberization at low kappa) (defiberization at high kappa)

Lignin Content and Nature (S/G)

 Overall, one should strive for low lignin content and high S/G ratios, if fiber line yield is main priority

2-O- α -D-galactopiranosyl-4-O-methyl- α -D-glucurono-D-xilan

Shatalov, A. A. et al. Carbohydrate Research, 320, 93-99, 1999.

Effect of wood xylan content on kraft pulp xylan content for various eucalyptus species at kappa 17

Source: Magaton & Colodette (5).

Eucalyptus has twice as much uronic acids compared to northern HWD

4-O-Me-glucuronic Acid | -Xil- Xil- XilHexenuronic Acid | —Xil— Xil— Xil—

Distribution of eucalyptus wood xylans after kraft pulping to kappa 17, expressed in % of wood original value

	Xylans, % of original wood			
Wood Species	Pulp	Black Liquor	Degraded	
E. dunni	51.3 (2.1) *	7.3	41.4	
E. globulus	54.1 (2.6)	7.7	38.2	
E. grandis	57.3 (2.8)	6.9	35.8	
E. nitens	52.6 (2.1)	4.0	43.4	
E urograndis	49.7 (1.9)	6.4	44.1	
E. urophylla	58.7 (2.6)	7.5	33.8	

*Values in brackets indicate MeGIA/ 10 xylose molar ratio measured by ¹H NMR.

Molecular weight (kDa) of xylans in the wood and in the corresponding kraft pulp: harvesting age eucalyptus clones of various origins cooked to kappa number 17

Species	Wood	Kraft Pulp	Black Liquor
E. dunni	36.7 <mark>(2.1)</mark> *	19.4	13.4
E. globulus	33.0 <mark>(2.6)</mark>	19.6	14.3
E. grandis	37.9 <mark>(2.8)</mark>	20.9	14.7
E. nitens	33.2 <mark>(2.1)</mark>	19.8	13.8
E. urograndis	34.9 <mark>(1.9)</mark>	19.9	14.3
E. urophylla	39.4 <mark>(2.6)</mark>	21.1	18.1

*values in brackets indicate MeGIA/ 10 xylose molar ratio measured by ¹H NMR.

Xylans/ Uronic Acids

 High xylans in the wood means high xylans in the pulp, but xylans are very sensitive to EA dosed during pulping (needs gentle cooking)

Final Remarks: Wood Quality

- Efficient production of kraft pulp is achieved with eucalyptus wood having reasonably high density, low extractives and lignin quantities and high lignin S/G ratio
- Xylans highly substituted with uronic acids are desirable as well (pulp quality)

- Mostly continuous
 - Few conventional Kraft
 - Mostly modified Kraft (gentle cooking)
 - Compact
 - Lo-solids
 - Few other modified (EMCC, MCC, ITC, KM)
 - No modified batch
- Cooking Aids
 - Anthraquinone frequently used
 - Other additives (surfactants, PS)

The ratio HexA/lignin is the main factor determining yield and bleachability

HexA is the main source of leuco-chromophores

Lignin is the main source of chromophores

Carbonyl group

Ethylenic group

Aromatic ring

Cooking Eucalyptus to High Yield and Bleachability

- ✓ Highest HexA/Lignin ratio ⇒ highest yield and bleachability*
- Sut, how to attain the highest HexA/Lignin ratio in kraft pulps?
 - * Bleachability = ∆ Kappa/ TAC across bleaching

TAC = Total Active Chlorine

Attaining a high HexA/Lignin ratio

Selecting wood of high 4-O-MeGluA content (difficult task)

➢ Gentle cooking

Terminating cooking at the proper kappa number for the wood supply available

Kappa # that maximizes HexA/Lignin depends on wood

E. globulus with low lignin content and high lignin S/G ratio maximized HexA at low kappa, with the opposite occurring for *E. camaldulensis*

Oxygen Delignification

Oxygen Delignification Single vs Double Stage

Oxygen Delignification

✓ For hardwoods, choice between single and double stage determined by pulp "true" lignin content

- second stage of little significance for pulps of high HexA content and cooked to low Kappa No.
- second stage attractive when pulping is terminated at high kappa (25-30) - more "true" lignin and yield gains

 New installations tend to install double-stage systems

Terminating cook at high kappa makes O₂ delig more attractive for HWD kraft pulps

Hardwood

1970	Conventional cooking	Bleaching
1990	Modified cooking	O → Bleaching
2000	Modified cooking	OO → Bleaching
2012	EIC 😽 Oxygen deli	gnification Bleaching
	30 20	10 Kappa number

ECF BLEACHING

Bleaching Drivers

- Capital, steam/energy (back to 3-stage?)
- bleaching chemical consumption
- brightness and brightness stability
 - >90⁺ % ISO
 - ≻2% ISO reversion (Tappi UM 200)
- pulp strength
- pulp OX (only special markets)
- bleaching yield
- water consumption
- effluent load & treatability

ECF Bleaching

First bleaching Stage

First Bleaching Stage – Kraft Pulp

Z/D, Z/E and AZ
 Z/D-(EPO)-D
 Z/E-D-P
 A-Z-D-P

Very interesting
approaches for improved
brightness stability and water reuse

Lower active chlorine demands:more cost effective D, D/A and A/D
D-(EP)-D
D/A-(EP)-D
A/D-(EP)-D-P

Sequences and Chemical Consumptions – O_2 delignified pulps

Sequence	Total Active Chlorine, kg/adt			
	Paper Pulp	Dissolving Pulp		
D*-(EPO)-D	45-50	-		
D*-(EPO)-D-P	35-40	20-30		
Z/D-(EPO)-D	35-40	-		
Z/E-D-P	55-65	-		
A-Z-P	-	30-40		

*D/A or A/D technology

The D/A Technology

Very successful if low kappa factors are used
 9 installations in South America

The Advanced A/D Technology

A-stage done in combined down-flow and up-flow towers
 6 installations in South America

Active Cl Consumption (%) for 90.0% ISO brightness

>Hot acid/ hot chlorine dioxide bleaching is effective for high bleachability pulps but ineffective for low bleachability ones, particularly those with high carryover

ECF Bleaching

Second Bleaching Stage

Second Bleaching Stage

- Oxidative extraction using lowest possible alkali dose (end pH 10 -10.5)
 - (EP)
 - (EPO)
 - (PO) New Installations
- Approach slightly different when using hot acid/ hot chlorine dioxide bleaching in first stage
 - Higher temperatures
 - Need for oxygen ?

ECF Bleaching

Final Bleaching Stage

Final Bleaching

✓ Single Stage
 – D
 – D_N/D
 ✓ Double Stage
 – DD
 – DP

Bleaching O₂ delignified pulp* to 90.0% ISO

Bleaching Results	D/A(EP)D	D/A(EPO)D _N /D	D/A(EP)DD	D/A(EP)DP
Total Act. Cl, % **	3.51	3.30	3.10	3.32
Relative Cost, %	100	102.5	103	103.8
Viscosity, mPa.s	14.8	15.6	16.0	14.5
Reversion, % ISO	2.0	2.0	1.7	1.4
Yield Loss, %	2.2	2.1	2.2	2.5

*Kappa 10.5, HexA's 67.2 mmol/kg, brightness 53.5% ISO and viscosity 36.8 mPa.s.

**Total active $CI = CIO_2^{*2.63} + H_2O_2^{*2.09}$

Last D-stage end pH vs Brightness : D/A-(PO)-D

Robles, Colodette and Milanez, IPBC 2005

Unbuffered Near Neutral ClO₂ Bleaching

"process works better on high HexA pulps and requires significant time/temperature"

The Near Neutral ClO₂ bleaching

 Unbuffered: End pH of 5-6.5 difficult to attain at high CIO₂ dose (initial pH of 11.5-12.0 required)

 $2\text{CIO}_2 + 2\text{OH}^- \rightarrow \text{H}_2\text{O} + \text{CIO}_2^- + \text{CIO}_3^-$

- Buffered: The use of a bicarbonate buffering system has been proposed (Jiang, Z-H & Berry, R., 2011 IPBC, Portland, USA)
 - Carryover + $CO_2 \Rightarrow NaHCO_3$
 - NaOH + $CO_2 \Rightarrow NaHCO_3$
 - $Na_2CO_3 + CO_2 \Rightarrow NaHCO_3$

Xylanase Bleaching

- Potentially very interesting for eucalypt pulp bleaching since the large majority of the residual lignin is linked to xylans
- ✓ Currently, there are powerful xylanases in the market (4 kappa units decrease for 100 g/adt xylanase application
- ✓ CIO₂ savings in the order 4 kg/adt has been achieved in long term mill trials with 40 g/adt enzyme application
- ✓ There are issues:
 - ✓ Effluent COD in open loops
 - ✓ Loss of O-stage efficiency in close loops
 - ✓ Some xylans losses (yield?)

Brightness Stability Brightness Reversion Color Reversion Yellowing, etc

Causes of Reversion – Bleaching Related

Residual lignin (quinones)
 Residual HexA
 Reducing groups
 Organically bound chlorine (pulp OX)
 "Brightness reversion is strongly

"Brightness reversion is strongly influenced by pulp slurry pH, before drying"

Effect of pulp pH on Reversion

Brightness Reversion

- The reversion caused by HexA is more severe when pulp is dried under acidic conditions
- The reversion caused by reducing groups is more severe when pulp is dried under alkaline conditions
- ECF bleached pulps contain only trace amounts of reducing groups but may contain significant amounts of HexA
- Pulp drying at pH around 7 (suspension) would solve reversion problems for eucalyptus pulps, but machine drainability issues prevent this practice

Final Remarks – Cooking & Bleaching

- ✓ Cook to high HexA/Lignin ratios at a given kappa for given wood
- Double O-stage recommended, particularly for low bleachability pulps (low HexA)
- ✓ D*-(EP)-D type sequence suffice for ECF bleaching of eucalypt pulps
- Hot acid/hot chlorine dioxide technologies are effective, especially for high bleachability pulps
- ✓ Chemical consumption strongly influenced by pulp origin (high HexA ⇒ high bleachability)
- ✓ Final chlorine dioxide stage more efficient at pH 5-5.5
- ✓ Xylanase bleaching has potential but need further work
- A certain amount of HexA is tolerable in bleached pulp, if slurry is adjusted to pH neutrality before drying